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Basic definitions
A probability simplex is defined as

∆n−1 = {(p1, . . . , pn) : p1 + · · ·+ pn = 1, pi ≥ 0 for i ∈ [n]}.

An algebraic statistical model is a subset M = V ∩∆n−1 for some
variety V ⊆ Cn.
For an empirical data point u = (u1, ..., un) ∈ ∆n−1, the log-likelihood
function defined by u assuming distribution p = (p1, ..., pn) ∈ M is

ℓu(p) = u1 log p1 + u2 log p2 + · · ·+ un log pn + log(c).
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Maximum likelihood estimation

1 The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution u ∈ ∆n−1, which point p ∈ M did
it most likely come from? In other words, we wish to maximize ℓu(p) over
all points p ∈ M.

2 Computing logarithmic Voronoi cells:

Given a point q ∈ M, what is the set of all points u ∈ ∆n−1 that have q
as a global maximum when optimizing the function ℓu(p) over M?

We call the set of all such elements u ∈ ∆n−1 above the logarithmic
Voronoi cell at q.
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Proposition (A., Heaton)
Logarithmic Voronoi cells are convex sets.

The log-normal space at q is the space of possible data points u ∈ Rn for
which q is a critical point of ℓu(p). It is a linear space.

Intersecting this space with the simplex ∆n−1, we obtain a polytope, which
we call the log-normal polytope at q.

The log-normal polytope at q contains the logarithmic Voronoi cell at q.

Example (The twisted cubic.)

The curve is given by p 7→
(
p3, 3p2(1 − p), 3p(1 − p)2, (1 − p)3

)
.
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Discrete linear models
A linear model is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton)
Let M be a linear model. Then the logarithmic Voronoi cells are equal to
their log-normal polytopes.

Any d-dimensional linear model inside ∆n−1 can be written as

M = {c − Bx : x ∈ Θ}

where B is a n × d matrix, whose columns sum to 0, and c ∈ Rn is a
vector, whose coordinates sum to 1.

A co-circuit of B is a vector v ∈ Rn of minimal support such that vB = 0.
A co-circuit is positive if all its coordinates are positive.

We call a point p = (p1, . . . , pn) ∈ M is interior if pi > 0 for all i ∈ [n].
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Interior points

For an interior point p ∈ M, the logarithmic Voronoi cell at p is the set

log VorM(p) =

{
r · diag(p) ∈ Rn : rB = 0, r ≥ 0,

n∑
i=1

ripi = 1

}
.

Proposition (A.)

For any interior point p ∈ M, the vertices of log VorM(p) are of the form
v · diag(p) where v are unique representatives of the positive co-circuits of
B such that

∑n
i=1 vipi = 1.

Yulia Alexandr Logarithmic Voronoi polytopes March 26, 2022 6 / 12



Gale diagrams
Let {v1, . . . , vn} be a vector configuration in Rd , whose affine hull has
dimension d . Consider the matrix

A =

[
1 1 · · · 1
v1 v2 · · · vn

]
.

Let {B1, . . . ,Bn−d−1} be a basis for ker(A) and B := [B1 B2 · · · Bn−d−1].
The configuration {b1, . . . ,bn} of row vectors of B is the Gale diagram of
{v1, . . . , vn}.

Theorem (A.)
For any interior point p ∈ M, the logarithmic Voronoi cell at p is
combinatorially isomorphic to the dual of the polytope obtained by taking
the convex hull of a vector configuration with Gale diagram B .

Corollary
Logarithmic Voronoi cells of all interior points in a linear model have the
same combinatorial type.
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Proposition (A.)
Every (n − d − 1)-dimensional polytope with at most n facets appears as a
logarithmic Voronoi cell of a d-dimensional linear model inside ∆n−1.
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Examples

B = [1,−5, 3, 1]T

c = (1/4, 1/4, 1/4, 1/4)

B = [−2,−1, 1, 2]T

c = (1/4, 1/4, 1/4, 1/4)
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On the boundary

Theorem (A.)
Let M be the d-dimensional linear model, obtained by intersecting the
affine linear space L with ∆n−1. Let w ∈ M be a point on the boundary of
the simplex. If L intersects ∆n−1 transversally, then the logarithmic
Voronoi polytope at w has the same combinatorial type as those at the
interior points of M.
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Example: d = 1.

Let M be a 1-dimensional linear model inside the simplex ∆n−1. Then
M = {c − Bx : x ∈ Θ}, where

B = [b1 . . . bm︸ ︷︷ ︸
>0

bm+1 . . . bn︸ ︷︷ ︸
<0

]T and c = (ci ).

Then Θ is the interval [xℓ, xr ] = [cℓ/bℓ, cr/br ] where bℓ < 0 and br > 0.
Assume r = 1. The log-Voronoi cell at xr is the polytope at the boundary
of ∆n−1 with the vertices

{ej : bj < 0} ∪

{
(ci − bi (c1/b1))bj

bjci − bicj
ei −

(cj − bj(c1/b1))bi
bjci − bicj

ej︸ ︷︷ ︸
vij

:
i ̸=r ,
bi>0,
bj<0

}
.

The log-Voronoi cell at xℓ is described similarly.
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Thanks!
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