Logarithmic Voronoi polytopes for discrete linear models

Yulia Alexandr (UC Berkeley)

AMS Special Session on Nonlinear Algebra with Applications to Statistics March 26, 2022

Basic definitions

• A probability simplex is defined as

$$\Delta_{n-1} = \{ (p_1, \dots, p_n) : p_1 + \dots + p_n = 1, p_i \ge 0 \text{ for } i \in [n] \}.$$

- An algebraic statistical model is a subset M = V ∩ Δ_{n-1} for some variety V ⊆ Cⁿ.
- For an empirical data point u = (u₁,..., u_n) ∈ Δ_{n-1}, the log-likelihood function defined by u assuming distribution p = (p₁,..., p_n) ∈ M is

$$\ell_u(p) = u_1 \log p_1 + u_2 \log p_2 + \cdots + u_n \log p_n + \log(c).$$

Maximum likelihood estimation

• The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution $u \in \Delta_{n-1}$, which point $p \in \mathcal{M}$ did it most likely come from? In other words, we wish to maximize $\ell_u(p)$ over all points $p \in \mathcal{M}$.

Maximum likelihood estimation

• The maximum likelihood estimation problem (MLE):

Given a sampled empirical distribution $u \in \Delta_{n-1}$, which point $p \in \mathcal{M}$ did it most likely come from? In other words, we wish to maximize $\ell_u(p)$ over all points $p \in \mathcal{M}$.

Occupation Computing logarithmic Voronoi cells:

Given a point $q \in \mathcal{M}$, what is the set of all points $u \in \Delta_{n-1}$ that have q as a global maximum when optimizing the function $\ell_u(p)$ over \mathcal{M} ?

We call the set of all such elements $u \in \Delta_{n-1}$ above the *logarithmic Voronoi cell* at *q*.

Proposition (A., Heaton)

Logarithmic Voronoi cells are convex sets.

The *log-normal space* at q is the space of possible data points $u \in \mathbb{R}^n$ for which q is a critical point of $\ell_u(p)$. It is a *linear* space.

Intersecting this space with the simplex Δ_{n-1} , we obtain a polytope, which we call the *log-normal polytope* at q.

The log-normal polytope at q contains the logarithmic Voronoi cell at q.

Proposition (A., Heaton)

Logarithmic Voronoi cells are convex sets.

The *log-normal space* at q is the space of possible data points $u \in \mathbb{R}^n$ for which q is a critical point of $\ell_u(p)$. It is a *linear* space.

Intersecting this space with the simplex Δ_{n-1} , we obtain a polytope, which we call the *log-normal polytope* at q.

The log-normal polytope at q contains the logarithmic Voronoi cell at q.

Example (The twisted cubic.)

The curve is given by $p\mapsto \left(p^3,3p^2(1-p),3p(1-p)^2,(1-p)^3
ight).$

Discrete linear models

A *linear model* is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton)

Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Discrete linear models

A *linear model* is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton)

Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Any *d*-dimensional linear model inside Δ_{n-1} can be written as

$$\mathcal{M} = \{ c - Bx : x \in \Theta \}$$

where B is a $n \times d$ matrix, whose columns sum to 0, and $c \in \mathbb{R}^n$ is a vector, whose coordinates sum to 1.

Discrete linear models

A *linear model* is given parametrically by nonzero linear polynomials.

Theorem (A., Heaton)

Let \mathcal{M} be a linear model. Then the logarithmic Voronoi cells are equal to their log-normal polytopes.

Any *d*-dimensional linear model inside Δ_{n-1} can be written as

$$\mathcal{M} = \{ c - Bx : x \in \Theta \}$$

where B is a $n \times d$ matrix, whose columns sum to 0, and $c \in \mathbb{R}^n$ is a vector, whose coordinates sum to 1.

A *co-circuit* of B is a vector $v \in \mathbb{R}^n$ of minimal support such that vB = 0. A co-circuit is *positive* if all its coordinates are positive.

We call a point $p = (p_1, \ldots, p_n) \in \mathcal{M}$ is *interior* if $p_i > 0$ for all $i \in [n]$.

Interior points

For an interior point $p \in \mathcal{M}$, the logarithmic Voronoi cell at p is the set

$$\log \operatorname{Vor}_{\mathcal{M}}(p) = \left\{ r \cdot \operatorname{diag}(p) \in \mathbb{R}^n : rB = 0, \ r \geq 0, \ \sum_{i=1}^n r_i p_i = 1 \right\}.$$

Proposition (A.)

For any interior point $p \in M$, the vertices of $\log \operatorname{Vor}_{\mathcal{M}}(p)$ are of the form $v \cdot \operatorname{diag}(p)$ where v are unique representatives of the positive co-circuits of B such that $\sum_{i=1}^{n} v_i p_i = 1$.

Gale diagrams

Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a vector configuration in \mathbb{R}^d , whose affine hull has dimension *d*. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$$

Let $\{B_1, \ldots, B_{n-d-1}\}$ be a basis for ker(A) and $B := [B_1 \ B_2 \ \cdots \ B_{n-d-1}]$. The configuration $\{\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n\}$ of row vectors of B is the *Gale diagram* of $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n\}$.

Gale diagrams

Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a vector configuration in \mathbb{R}^d , whose affine hull has dimension *d*. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \boldsymbol{v}_1 & \boldsymbol{v}_2 & \cdots & \boldsymbol{v}_n \end{bmatrix}$$

Let $\{B_1, \ldots, B_{n-d-1}\}$ be a basis for ker(A) and $B := [B_1 \ B_2 \ \cdots \ B_{n-d-1}]$. The configuration $\{\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n\}$ of row vectors of B is the *Gale diagram* of $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n\}$.

Theorem (A.)

For any interior point $p \in M$, the logarithmic Voronoi cell at p is combinatorially isomorphic to the dual of the polytope obtained by taking the convex hull of a vector configuration with Gale diagram B.

Corollary

Logarithmic Voronoi cells of all interior points in a linear model have the same combinatorial type.

Yulia Alexandr

Proposition (A.)

Every (n - d - 1)-dimensional polytope with at most n facets appears as a logarithmic Voronoi cell of a d-dimensional linear model inside Δ_{n-1} .

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

ヘロト ヘロト ヘヨト ヘヨト

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロト ヘロト ヘヨト ヘヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

・ロト ・四ト ・ヨト ・ヨト

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロト ヘ週ト ヘヨト ヘヨト

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロト ヘ週ト ヘヨト ヘヨト

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

・ロト ・四ト ・ヨト ・ヨト

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

・ロト ・四ト ・ヨト ・ヨト

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

ヘロア 人間 アメヨア 人間アー

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

・ロト ・四ト ・ヨト ・ヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

・ロト ・四ト ・ヨト ・ヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

▲日 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

・ロト ・四ト ・ヨト ・ヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

・ロト ・四ト ・ヨト ・ヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

イロト イヨト イヨト イヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

イロト イヨト イヨト イヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

イロト イヨト イヨト イヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

c = (1/4, 1/4, 1/4, 1/4)

イロト イヨト イヨト イヨト

$$B = [1, -5, 3, 1]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

$$B = [-2, -1, 1, 2]^T$$

$$c = (1/4, 1/4, 1/4, 1/4)$$

イロト イヨト イヨト イヨト

On the boundary

Theorem (A.)

Let \mathcal{M} be the d-dimensional linear model, obtained by intersecting the affine linear space L with Δ_{n-1} . Let $w \in \mathcal{M}$ be a point on the boundary of the simplex. If L intersects Δ_{n-1} transversally, then the logarithmic Voronoi polytope at w has the same combinatorial type as those at the interior points of \mathcal{M} .

∃ ► < ∃ ►</p>

Example: d = 1.

Let \mathcal{M} be a 1-dimensional linear model inside the simplex Δ_{n-1} . Then $\mathcal{M} = \{c - Bx : x \in \Theta\}$, where

$$B = [\underbrace{b_1 \ \dots \ b_m}_{>0} \ \underbrace{b_{m+1} \ \dots \ b_n}_{<0}]^T \text{ and } c = (c_i).$$

Then Θ is the interval $[x_{\ell}, x_r] = [c_{\ell}/b_{\ell}, c_r/b_r]$ where $b_{\ell} < 0$ and $b_r > 0$. Assume r = 1. The log-Voronoi cell at x_r is the polytope at the boundary of Δ_{n-1} with the vertices

$$\{e_j: b_j < 0\} \cup \left\{ \underbrace{\frac{(c_i - b_i(c_1/b_1))b_j}{b_jc_i - b_ic_j}e_i - \frac{(c_j - b_j(c_1/b_1))b_i}{b_jc_i - b_ic_j}e_j}_{v_{ij}}: b_{ij} < 0 \right\}.$$

The log-Voronoi cell at x_{ℓ} is described similarly.

Thanks!

v	112		<u></u>	nc	

・ロト ・四ト ・ヨト ・ヨト